Action B4. Evaluating the Produced Feed for Pigs and Poultry Husbandry Deliverable B4.1. Complete Chemical analysis of the produced feed, through the pigs and poultry husbandry perspective

LIFE Project Number LIFE15 ENV/GR/000257

LIFE PROJECT NAME or Acronym LIFE-F4F (Food for Feed)

Annex Data					
Action	B4 Evaluating the Produced Feed for Pigs and Poultry Husbandry				
Partner:	AUA				
Deliverable :	B4.1 Complete chemical analysis of the produced feed, through the pigs and poultry husbandry perspective				

Table of contents

1.	ACTION B.4.: EVALUATING THE PRODUCED FEED FOR PIGS AND POULTRY HUSBANDRY	3
ACTI	VITY B.4.1.: ANALYSIS OF PRODUCED FEED	3
B.4.1	.1. ANALYSIS OF THE FEED FROM THE FIRST INITIAL OPERATIONAL PERIOD	3
B.4.1	.2. ANALYSIS OF THE FEED WITH NO MEAT CONTENT	6
B.4.1	.3. ANALYSIS OF STERILIZED AND NON-STERILIZED MATERIALS	6
B.4.1	.4. ANALYSIS OF MATERIAL FROM SUPERMARKETS WITH VEGETABLE WASTE	9

1.ACTION B.4.: Evaluating the Produced Feed for Pigs and Poultry Husbandry

Activity B.4.1.: Analysis of produced feed

Deliverable 1. Complete chemical analysis of the produced feed, through the pigs and poultry husbandry perspective

B.4.1.1. Analysis of the feed from the first initial operational period

Date	Sample code	T ¹ ℃	DM ² %	Ash %	CP ³ %	EE ⁴ %	CF ⁵ %	Insolubl e Protein % CP	Soluble Protein % CP	NPN ⁶ % of SP ⁷	True Protein % of SP
08/12/17	35°C	35	94.99	6.48	20.51	23.50	5.09				
	45°C	45	92.43	5.21	17.70	20.51	3.72				
	55°C	55	91.81	5.00	16.61	20.16	3.86				
	65°C	65	92.19	5.10	17.02	21.40	3.75				
30/03/18 Mean value	2_35_A 2_35_B 2_35_C	35	91.00	5.25	27.37	23.57	2.14	12.60	15.56	13.96	1.50
	2 45 A										
	2_45_B	45	85.41	4.91	24.84	22.58	1.64	10.16	14.05	13.35	0.70
	2_45_C										
	2_55_R 2_55_C	55	94.20	5.27	26.31	23.53	2.43	13.70	12.71	11.51	1.20
	2_55_C										
	2_65_B 2_65_C	65	94.90	5.24	25.92	24.51	2.09	12.46	13.22	11.36	1.86
23/07/18	1(4/6)_A_45										
Mean value	1(4/6)_B_45 1(4/6)_C_45	45	92.74	10.71	23.46	22.05	8.10	7.35	16.01	15.87	0.14
	1(4/6)_A_55 1(4/6)_B_55 1(4/6)_C_55	55	91.60	8.38	18.79	20.51	4.06	6.64	12.49	12.30	0.19

Table 1. Chemical analyses results of the samples dried at different temperatures

Action B4. Evaluating the Produced Feed for Pigs and Poultry Husbandry Deliverable B4.1. Complete Chemical analysis of the produced feed, through the pigs and poultry husbandry perspective

Date	Sample code	T ¹ ℃	DM ² %	Ash %	CP ³ %	EE ⁴ %	CF ⁵ %	Insolubl e Protein % CP	Soluble Protein % CP	NPN ⁶ % of SP ⁷	True Protein % of SP
	1(4/6)_A_65 1(4/6)_B_65 1(4/6)_C_65	65	90.78	7.84	20.70	16.17	4.43	8.00	12.65	12.62	0.03
	2(5/6)_A_45 2(5/6)_B_45 2(5/6)_C_45	45	91.36	5.47	18.70	32.16	4.07	7.09	11.59	11.26	0.33
	2(5/6)_A_55 2(5/6)_B_55 2(5/6)_C_55	55	91.78	5.49	17.67	32.37	4.20	7.58	10.02	9.77	0.25
	2(5/6)_A_65 2(5/6)_B_65 2(5/6)_C_65	65	90.13	4.94	16.91	18.45	4.07	7.31	9.76	9.25	0.51

 $^{1}T = Temperature$

 $^{2}DM = dry matter$

 $^{3}CP = crude protein (N \times 6.25)$

 ${}^{4}\text{EE} = \text{ether extracts (fats etc.)}$

 ${}^{5}CF = crude fibre (cellulose, hemiselluses ..)$

 6 NPN = non protein nitrogen

 7 SP = soluble protein

Insoluble + Soluble Protein = Crude Protein

Non Protein nitrogen + True Protein = Soluble Protein

From the above results, despite their variability, it seems that the drying temperature has no effect on the samples chemical composition. The observed variability among the samples in their chemical composition is rather expected since there is variability in the raw (wet) material. If the total amount of each batch will be grinded and mixed properly, then the outcome will be homogeneous with minimum variability.

Table 2. The carbohydrates' (fructose, glucose, sucrose, maltose and starch) content of the samples dried at different temperatures (35°C, 45°C, 55°C, 65°C)

CARBOHYDRATE %	35 °C 2_35_A	45 °C 2_45_A	55 °C 2_55_A	65 [°] С 2_65_А
Fructose	<0.1	0.1	2.2	1.3
Glucose	2.4	3.1	1.5	0.5
Sucrose	0.2	0.2	<0.1	0.6
Maltose	<0.1	<0.1	1.8	0.5
Starch	41.7	26.8	23.1	8.7

From the results of table 2, it can be seen that there is no great variability among the four samples as the individual carbohydrates content is concerned. The insignificant differences that exist among them are due to the same reasons explained earlier on for the samples' chemical composition.

Table 3a. Chemical analysis results of the sample of the **final product**, used for the 1st trial in poultry and pigs, according to Weende procedure

SAMPLE CODE	DRY MATTER %	ASH %	CRUDE PROTEIN %	ETHER EXTRACT %	CRUDE FIBER %
FINAL PRODUCT	89.56	5.49	22.46	21.76	3.92

Table 3b. Solubility analyses of feed samples used in poultry and pig trials

Sample code	СР	Insolubl	Soluble	NPN	True
	%	е	Protein	% of	Protein
		Protein	% CP	SP	% of SP
		% CP			
Poultry Control starter	22.82	17.38	5.44	2.50	2.90
Poultry Control Treatment	22.69	16.75	5.93	3.72	2.21
Poultry Grower starter	21.98	16.68	5.30	2.78	2.51
Poultry Grower Treatment	21.02	15.30	5.72	3.58	2.14
Poultry Finisher starter	18.88	14.92	3.95	2.20	1.75
Poultry Finisher Treatmen	18.67	13.44	5.22	3.27	1.95
Pig Control	15.32	11.93	3.39	1.89	2.99
Pig DFR Treatment	14.78	10.66	4.12	2.32	1.80

DFR= dried food residues

 $CP = crude protein (N \times 6.25)$

NPN = non protein nitrogen

SP = soluble protein

Insoluble + Soluble Protein = Crude Protein

Non Protein nitrogen + True Protein = Soluble Protein

Picture 1. Samples obtained at different temperatures (35°C, 45°C, 55°C, 65°C)

Action B4. Evaluating the Produced Feed for Pigs and Poultry Husbandry Deliverable B4.1. Complete Chemical analysis of the produced feed, through the pigs and poultry husbandry perspective

Picture 2. Nitrogen solubility determination in the samples

B.4.1.2. Analysis of the feed with no meat content

A material without meat was used for the two second experiments for broilers and pigs. Crude protein and ether extract were significantly lower in this material, while crude fibre was more than two times from the respective value of the material used in the previous trials.

B.4.1.3. Analysis of sterilized and non-sterilized materials

SAMPLE CODE	DRY MATTER	ASH	CRUDE PROTEIN	ETHER EXTRACT	CRUDE FIBRE
	%	%	%	%	%
1(2)_(3/8)_3	90.36	6.16	20.58	22.27	3.16
1(2)_(3/8)_3_ST	86.99	5.75	20.25	21.46	3.22
2(2)_(25/9)_4	89.16	6.00	20.65	22.40	2.93
2(2)_(25/9)_4_ST	85.94	5.95	20.25	20.81	2.96
3(2)_(12/10)_5	83.93	6.33	21.07	22.85	3.22
3(2)_(12/10)_5_ST	86.86	6.17	20.86	21.85	3.40
5(2)_(16/10)_8_OR	86.31	4.86	9.78	4.86	9.34
5(2)_(16/10)_8_OR_ST	89.33	4.92	9.32	3.54	9.60

Table 4. Cl	hemical anal	vsis results	of sterilized an	nd non-sterilized	samples
	ionitioni unui	, 515 105 4105	or brorninged an	na non beernieea	Dampies

ST = sterilized

Similar values arise from the analysis of the sterilized material for the 2nd poultry trial.

B.4.1.4 Analysis of material from supermarkets with vegetable waste

Table 5. Chemical analysis of supermarkets' vegetable waste

SAMPLE CODE	DRY MATTER %	ASH %	CRUDE PROTEIN %	ETHER EXTRACT %	CRUDE FIBRE %
VEGETABLE WASTE (from supermarkets)	92.02	13.18	16.88	4.25	19.01